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Direct Secant Updates of Matrix Factorizations* 

By J. E. Dennis, Jr. and Earl S. Marwil** 

Abstract. This paper presents a new context for using the sparse Broyden update method to 
solve systems of nonlinear equations. The setting for this work is that a Newton-like algorithm 
is assumed to be available which incorporates a workable strategy for improving poor initial 
guesses and providing a satisfactory Jacobian matrix approximation whenever required. The 
total cost of obtaining each Jacobian matrix, or the cost of factoring it to solve for the Newton 
step, is assumed to be sufficiently high to make it attractive to keep the same Jacobian 
approximation for several steps. This paper suggests the extremely convenient and apparently 
effective technique of applying the sparse Broyden update directly to the matrix factors in the 
iterations between reevaluations in the hope that fewer fresh factorizations will be required. 
The strategy is shown to be locally and q-superlinearly convergent, and some encouraging 
numerical results are presented. 

1. Introduction. Consider iterative methods for the solution of a nonlinear system 
of equations. Given a function F: 2 c RC R , find a solution to F(x) 0 O. Assume 
that a solution x* E 02 exists. Let F'(x) JF(x) = J(x). Suppose there exist con- 
stants {-y11: i, j = 1,... , n} such that 

(1.1) l eT J(x) - J(x*)] ej I SYij 1 -X*1 2 

for all x (E 0, where ei is the ith column of the identity matrix. Further assume that 
J(x*) is nonsingular. 

Generalized secant methods are used frequently for this problem. Given an 
approximation xk to x*, obtain a better approximation xk+ = Xk + sjN, which is the 
solution to the affine problem 

(1.2) Mk(x) F(Xk) + Bk(X - Xk) 0, 

a model of F(x) 0 O for x near Xk. Locally, this direct prediction step is taken. Even 
when the model is not good the quasi-Newton step s,N is used in the determination of 
Xk+ I. It is computed by solving 

(1.3) BkSN = -F( xk) 

which is equivalent to Mk(xk + Sk) 0 
This leaves the method for specification of {Bk} to be chosen. Many choices are 

available; most commonly Bk?+ is obtained either by a Broyden update of Bk, 

(k- Bks)S[ (1.4) Bk+ Bk + JSkk 
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withyk = F(xk + Sk) - F(xk) and Sk = Xk+I - Xk, or from the exact Jacobian or a 
finite difference approximant, or by taking Bk+l = Bk [7]. The Broyden update is 
the unique solution to the Frobenius norm minimization problem: 

(1.5) min I B - Bk 11 F:B Q(Yk sk) {B Rnxn: Bsk = y} } 

Of particular interest here is the class of problems for which the solution of (1.3) is 
by matrix factorization techniques, and the factorizations, required each time Bk is 
recomputed, represent an important part of the work necessary to obtain xk+ I. In a 
private communication, Alan Hindmarsh [13] has pointed out an instance of such a 
problem arising in the numerical solution of ordinary differential equations. In his 
example, the triangular factorization of Bk = J(Xk) requires 20 relative computa- 
tional units, while F(xk) and the analytic form of J(xk) require only 1 and 3 units, 
respectively. This is representative of a large and important class of problems in 
which the Jacobian is computed relatively cheaply because advantage can be taken 
of its sparsity. See also [4]. 

Define the subspace Zi C RW, which identifies the sparsity structure of the ith row 
of the Jacobian, by 

(1.6) Zi = {v E RW: eJTv = 0 for allj such that eTJ(x)e1 = 0 for all x E &2}. 

Then the subspace Z C RW X W that identifies the sparsity structure of the Jacobian 
is defined by 

(1.7) Z-{A RnXn: ATe CZ1fori= 1,2,...,n}. 

The sparse Broyden update given by Schubert [17] and Broyden [2] has the property 
that if Bk E Z, then Bk+l E Z also. To write the sparse Broyden update, we first 
define the "sparsity" projection operators Si, i = 1,2,...,n, that project orthogo- 
nally in the Frobenius norm onto the spaces Z1, i = 1,2,...,n. Then Bk+l can be 
written as 

(1.8) Bk+l = Bk + 2 [(SISk)T(SiSk)]+ e(Yk - Bksk)e1(Sisk)' 

where (.)+ is the generalized inverse; for a scalar a, a+ = 0, if a = 0, and a+ = a-' 
for a # 0. Note that Bk+l is obtained from Bk at a cost proportional to the number 
of nonzero elements in a member of Z. The sparse Broyden update is the unique 
solution to the minimization problem: 

min{IB - Bk 11 F: B E Q(Yk, Sk) n Z}. 
It seems clear why (1.8) has not been very widely used for problems like the one 

pointed out by Hindmarsh. Effectively, Bk is corrected by a rank n matrix, and the 
availability of a factorization of Bk does not reduce significantly the work necessary 
to obtain the corresponding factorization of Bk+P. In Hindmarsh's example, we see 
that the work for a Newton step is 24 computational units compared to 21 units for 
a sparse Broyden step. Even this small saving is possibly an overestimate, since it is 
quite likely that Bk+l = Bk will be successful for several steps at a time if J is 
computed accurately at the start of a string of stationary steps. This saving is much 
more likely to accrue in Newton's method than in the sparse Broyden method. 

The new method, which should allow a reduction in the number of matrix 
factorizations needed for convergence, is outlined in the next section. The theoretical 



DIRECT SECANT UPDATES OF MATRIX FACTORIZATIONS 461 

details are given in Section 3, and computational results indicating the utility of the 
method are presented in Section 4. 

2. A Doolittle Updating Method. The algorithm outlined here is representative of a 
general technique for producing inexpensive updates of matrix factorizations. This is 
not the same as techniques for obtaining matrix updates in factored form as in the 
case of rank 1 and rank 2 updates [1], [12]. Here, the update is defined implicitly by 
the updated factors [5]. 

Consider the case when (1.3) is solved at each step by using a Doolittle decom- 
position with a partial pivoting strategy, 

PkBk = LkUk 

where Pk is a permutation matrix recording the row interchanges; Lk E ek an affine 
subspace of lower triangular n X n matrices with ones on the diagonal; Uk E &lJk a 
subspace of upper triangular n X n matrices. Assume that ek and 9'tk reflect the 
sparsity of PkA = LU for A E Z. Pk may be chosen to affect the sparsity of f&k and 

Think of Pk and Lk as carriers of the information on row operations which 
transform Bk into upper triangular form. Thus, if Bk is near J(x.) then L-k'PkJ(x*) 
ought to be well approximated by upper triangular matrices. The strategy then is to 
consider Uk to be such an approximation. Obtain Uk?+l by a sparse Broyden update 
to Uk in the hope of improving the approximation by incorporating new information 
gained in making the step Sk; the cost is proportional to the number of nonzeros of 
an arbitrary element in 9'kt If the update is successful, then take 

Pk+ I 
= Pk I Lk+1= Lk' 

and Bk?+ I Q(Yk, Sk) is implicitly defined by 

(2.1) Pk+lBk+l Lk+lUk+?l 

The sparse Broyden approximation (1.8) uses Yk = F(Xk + Sk) - F(Xk) since 

J(x.) should be near Q(Yk, Sk). In the transformed problem, a Vk is desired so that 
U(x*) is near Q(Vk, Sk). From the discussion above then, the row manipulations 
applied to Yk give Vk -L-'Pkyk, an approximation to Lk'PkJ(x*)sk, which is the 
change in the dependent variable expected from an upper triangular approximation 
of L- 'Pk J(X*) applied to the change in the independent variable. 

Thebasicideaistochoose Uk+l tosolvemin{IU- UkIIF: U& 'tk k Q(Vk,Sk)}, 

where Qtk defines the sparseness structure and the projectors. If the intersection is 
nonempty, the update is given by 

n 

(2.2) Uk+l = Uk + 2 [(SiSk)T(SiSk)] ei (Vk - UkSk)e,(SiSk)T- 

In fact, Uk+ l solves 

mint I IU- Uk11 F: U E &Qtk is a nearest point in tk to Q(Vk, Sk)}. 

If the intersection is empty, this is a reasonable choice of Uk+ ?1 

Unfortunately, neither U(x*)Sk nor L(x*)-'Pkyk is available, so we use Vk 

L-'Pkyk which approximates L(x*)-'yk. This forces us to modify the basic algorithm 
to include a periodic restart and a test to prevent updating any row of Uk that is not 
adequately represented in the step Sk. For simplicity, the algorithm is stated under 
the assumption that a Newton step can be taken at each iteration. 
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Doolittle Updating Algorithm. 
(1) Choose x0 E W, 

m, a fixed positive integer, and 
,B, a fixed positive number. 

Set k = 0. 
(2) Evaluate Fo = F(xo), and 

J= J(xo0), or a finite difference approximation to J0. 
(3) Factor P0 Jo LOUO by a Doolittle scheme with partial pivoting. 
(4) Solve Lowk = -POFk and UkS = Wk. 

Set xk+1=x + SN Stk+1 = Xk+Sk 
(5) If k = m - 1, set x0 = Xk+ 1 and go to (2); else evaluate 

Fk+l F(Xk+l) and setyk = Fk+l -k 

(6) Solve Lovk = PoYk 

(7) Update thejth row of Uk if liSkil < ,BII SjSk 11, i.e., we define 

XP(Sk) = j: IISk II < A IISjSk 11} and 
Uk+ 1 = Uk + jEzX#(sk) [(Sjsk)T(SjSk)]+ ef(vk - Uksk)e1(SJsk)T. 

Replace k by k + 1, and go to (4). 

The role of the constant ,B is to prevent a correction to a row of Uk when the 
projected step along that row is too small relative to the full step. For example, if 
A3 2 ?' and 1 + E = 1, then no row of Uk is updated for which 

II SjSk 11 + IlSkil = liSkll 

to working precision. For j E X,(sk) = { 1, 2,. .. , n}\ XP(sk) this has the effect of 
redefining thejth component of vk to be thejth component of UkSk before applying 
(2.2) to get Uk+l. The need for this precaution and for restarts every m iterations 
seems to be real. These are certainly useful in the convergence analysis given in the 
following section, but they appear to be more than just formal conveniences. 
Intuition suggests that vk must be chosen so that Q(vk, Sk) approaches U(x*) faster 
than Sk goes to zero. 

A value for 13 has already been suggested; now consider the choice for m. Rather 
than always restarting after the same fixed number of iterations, it is probably better 
to allow the need for a change in the pivot sequence, or the size of the proposed 
change in Uk, or even Pk, to trigger a restart step. The condition number estimates of 
[3] and [9] applied to Uk+ I should be extremely useful in this context. Furthermore, 
a global implementation along the lines of More's MINPACK implementation of 
Powell's HYBRID t 15] is anticipated. It is difficult to imagine a more reasonable set 
of restart rules than More's. In the preliminary tests presented in Section 4, the tests 
with m and 13 were omitted, effectively setting m = ox and 13 = 0, since a good initial 
guess was used. 

Although Z is independent of x, a reevaluation of the Jacobian and subsequent 
Doolittle factorization possibly introduces a different pivot sequence and changes e, 
and 1t, and hence the definition of step (7) of the algorithm. 

3. Convergence. In this section we give the convergence result for the Doolittle 
updating algorithm (Theorem 3.9). We begin with a formal description of the 
Doolittle decomposition and a discussion of pivoting strategies. Once a pivoting 
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strategy has been selected, we give a continuity result saying that the same pivoting 
strategy can be used at a "nearby" point. Finally we establish a bounded deteriora- 
tion estimate relating Uk+ l to Uk. Some preliminary results are required which make 
this section rather lengthy. The proofs of Theorems 3.3 and 3.9 have been placed in 
Appendix 1 for completeness without clutter. 

The Doolittle decomposition is a particular implementation of Gaussian elimina- 
tion that produces triangular factors, L and U, with L unit lower triangular and U 
upper triangular. The following algorithm is the Doolittle decomposition with partial 
pivoting. 

Algorithm 3.1 [19]. 
For r = 1, 2, ..., n do steps I through 4 
(1) Compute urj =arj - rIlrkukjj = r, ... n. 
(2) Set intr equal to the smallest k 2 r for which I akr maxr?i?n - aJr I . 
(3) Interchange the rth and intrth rows of the array. Refer to these rows by their 

new positions. 

(4) Compute 'ir = (air -I lzkUkr)/Urr i r + 1,... ,n. 
Steps (2) and (3) are the partial pivoting strategy. We will refer to the "LU 
decomposition without pivoting" meaning the algorithm without steps (2) and (3). 
The following result establishes when the LU decomposition without pivoting may 
be carried out. 

THEOREM 3.2 [19]. Let A E L(RW) be nonsingular. Then the following are equiva- 
lent: 

(a) The L U decomposition without pivoting can be carried out. 
(b) There is a unique unit lower triangular matrix L and a nonsingular upper 

triangular matrix U such that A = LU. 
(c) All the leading principal submatrices of A are nonsingular. 

Now, consider any pivoting strategy P such that the LU decomposition of PA can 
be carried out, then Theorem 3.2 will apply to PA. The standard partial pivoting 
strategy chooses the first element of maximum size in a particular column on or 
below the main diagonal. This is designed for numerical stability, but can destroy 
the sparsity of the problem. To preserve, as much as possible, the sparseness of the 
factors, we should use a pivoting strategy with some flexibility. Duff [10] calls 
"threshold pivoting" a strategy that allows, for some T > 0, the selection of nonzero 
pivots which are at least 1/T times the largest element in a row or column. Erisman 
and Reid [11] give a formula to monitor the growth of the matrix elements in the 
factorization, using only the sparsity pattern and T. If the growth is too large, a 
smaller value of T can be chosen. Duff also notes that T = 10 yields good retention 
of sparsity and generally good numerical accuracy. He also recommends iterative 
refinement to improve the solution, since solutions for systems with sparse triangular 
factorizations are fairly cheap. 

For T 2 1, the pivot rule for threshold pivoting can be stated. 
(2', 3') A row interchange must be made if 

I lkr l> T Ilrr I for some k = r + 1,...,n. 

This allows a choice of interchanges to retain as much sparsity as possible in the 
decomposition, while still pivoting to hold down element growth. 
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In proving a convergence result of the same nature as for other Newton-like 
methods, a continuity assumption is required on the Jacobian. Now, using factoriza- 
tions and an open pivoting strategy, we first must show that factorizations are 
continuous. The following theorem gives sufficient conditions for the LU decomposi- 
tion to be continuous in a neighborhood of a point where the LU decomposition 
without pivoting exists. The proof is in Appendix 1. 

THEOREM 3.3. Let A: Rn - RnXn, and suppose that for some xo E RW, A(xo) is 
nonsingular, and that there exist e0 > 0 and yij 2 0 such that 

eiT[A(x) -A(y)] ej I < -yij 11 - 11 2 

for i, j 1,2,.. ., n and for all x, y E N(xo, e0). If the LU decomposition without 
pivoting exists at xo, A(xo) = L(xo)U(xo), then there exists E > 0 such that the 
decomposition without pivoting exists for all x E N(x0, e). 

Furthermore, there exist constants co, do > 0 such that 

11 L(x) - L(xo)II F < CO 11X- XO112 and 11 U(x) - U(xo) F < do 11x- XO112 

for allx &N(xo, e). 

For the local convergence of the Doolittle updating algorithm we must have xo 
sufficiently close to x* such that the pivoting strategy selected at xo also works at x*. 
The next theorem and corollary establish the relationship. 

THEOREM 3.4. Let A: Rn -, Rnxn be continuous and nonsingular at x*. If PA(x*) is 
any row permutation of A(x*) for which PA(x*) does not have an LU decomposition 
without pivoting, then, for any T> 0, there exists iqT > 0 such that no threshold 
pivoting strategy based on T would select a pivot sequence corresponding to P for any 
x E N(x*, 7qT)' 

Proof. Since PA(x*) does not have an LU decomposition without pivoting, then 
for some k, 1 < k < n, lkk(x*) = 0 (k # n because A is nonsingular). But PA(x*) is 
nonsingular, so lk+i k(X*) # 0 for some i, 1 < i < n - k. Thus, by the continuity of 
the decomposition, there exists qT > 0 such that, for x E N(x*, iqT), PA(x) is 
nonsingular and j lk+i k(X) j> T Ilkk(x) j. Thus P would not be selected by a pivot 
strategy for A(x). 

COROLLARY 3.5. Let A be as in Theorem 3.4. For any threshold pivoting strategy, 
there exists 71T such that if x0 E N(x*, 7iT) and if P0 is a pivot sequence for which 
POA(xo) has an LU decomposition without further pivoting, POA(xo) = LU, then 
PoA(x*) can be factored without pivoting. 

Proof. Let 6i'* = {P: PA(x*) does not have an LU decomposition without pivot- 
ing). Note that 6i'* is a finite set, so * = {P1, P2,. . . , P. From Theorem 3.4, for 
each Pi there exists 7qi such that the permutation matrix Pi would nQt be selected by 
the pivot strategy for any A(x), x E N(x*, qi). Let 1T = mini1 ?m m. Let xo E 

N(x*, 1T), and apply the algorithm to obtain POA(xo) LU. Then PO0 fi6* so 
PoA(x*) can be factored. 

Next we give a bounded deterioration result relating the updated triangular factor 
Uk+l to Uk. 
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LEMMA 3.6. Let F: Rn -- Rn and assume that there exists x* & Rn such that 

F(x*) 0 O and J* J(x*) is nonsingular. Assume that there exists - > 0 such that 
(1.1) holds for all x C N(x*, e). Then, given a pivoting strategy PO, there exists 
e0 C (0, e] such that, if the LU decomposition without pivoting of PoJ(xo) = 

L(xo)U(xo) exists at xo C N(x*, eo), then Po J(x*) can be factored without pivoting. 
Furthermore, {U1})%1 defined by step (7) of the Doolittle updating algorithm satisfies 

IIU1?1 - U*IIF IIU,- U*II2+ IIL1 1Im2M#[Ka2 + IIU*II2CoIIXo - X*112j, 

where /3 > 0 is set in step (1) of the algorithm, K = IIl F I = (Yij), and or = 

max(Ilx,+I - x*II2, lix - X* II2). 

Proof. The first assertion follows from Corollary 3.5, taking ?o = min(e, IlT); 

furthermore, it also follows that P0J(x) has an LU decomposition without pivoting 
for all x e N(x*, eo). Let PoJ(x*) = L*U*. Since eo < e, Theorem 3.3. gives co > 0 
such that 

1IL(x) - L*IIF < COIIX -X*112 

for all x e N(x*, EO). 
To prove the second assertion, evaluate II U,+- U*l 1 2 using the update in step 

(7). Set X(s,) {i: 1I 1112 I(,)II2 where (s,)= Sis,}. Then, 

2 

IIU+? - LJ2F. || u* + 2 [(s,)i(s,)] eT(Lo'Poy,- U,s,)ej(s,)| 
Xa(S1) F 

=2 {l eT (U - U* )I _-(SI) T(sl)i] (Sl )(sI)T 112 

IeT(L&Poy -U*s j)[(S,)T(S,)i~ +(S)TII1} +T Ie(U, U- u 2i 
XA(si) 

< IIU U*112 + ( O ll[ * lT(Sl)l (li S) 1}+E1 i(l *l 

A~~~~(s,)P *Us 

x,O(S/)~ ~~~~~~~~~a(I 

Xa(SI)~~~~~~~~~~~~~~~~~S)T1 
+L*U*sl - LoU*sj)(s)iTI 2 

s IIU- U*112 + E {II[(SI) T(Sj)] eLP(,j*S,) (Sj) T1 

X#(s,) 

+II[(s,)T(S,)i, eTL-'Po(L* - LO)U*SI(Sl) 1T2} 

X,~~~~+1(s1)e T0 
< IIU- U*112 + z[lO121(lIl21Y-JS l 

-'I20 S) I 1YI-J* I1 

+11l(s,),l 
+ 1 L* - Lo11211lU*11 2 ,11S 2)] 

m 

?11 u - U*11I2 + 11 L-1 11 2 2 
k( Kic + 11 U* 11 2co 11 XO - X*11 2) 

F = 1 
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by the update criterion in step (7) of the algorithm, the Lipschitz continuity of J, and 
Theorem 3.3, 

11U1-U*IIF+ 
- LUo 1112m (Kui + 11 U* 11 2Co 11 Xo - X* 11 2) 

which is the desired result. 
The most convenient norm for the error estimates is the weighted norm estab- 

lished at the start of the iteration. 
Definition 3.7. Define the left weighted Frobenius norm 11 * 11 L-1,F: L(RW) --*Rn by 

11I L -1,F 1ILo IF 

for Lo nonsingular and lower triangular. 
The next lemma relates the various norms. 

LEMMA 3.8. Let L: Rn -) Rnxn be a continuous operator into the lower triangular 
matrices. Suppose L-l(x) = L(x)-l exists and is continuous on N(x*, E), for some 
x W andE > 0. Then there exist constants ij and > 0 such that 

'III L-1(x),F I F for all x E N(x*, ?) 

and 

"IIF T 
IL-l(x)F for all x E N(x*, e). 

Proof. Let sp = x 
, 
e) L- (x)11 2 and q = supxE(x* ,e) 11 L(x)II 2. Then 

1* L-l(X),F '< 1I L l(x) * 11 F '< 1I L 1(x)|| 2 11 || F 
- 
71 I || F 

and 

I*F -< JIL(x)L'(x) *F F< 
I L(x)I1 2 11L'(x) IIF F?<71l IIL-l(x)F 

Let q > 0 be such that the matrix norms satisfy II - II F -< 71 1 * 11 2. 

We now state the convergence result for the Doolittle updating algorithm. The 
proof is in Appendix 1. 

THEOREM 3.9. Let F: Rn -- Rn be continuously differentiable in an open convex set 

Do. Assume that there exists x* C Do such that F(x*) 0 O and J(x*) is nonsingular. 
Assume that there exists r = (Yij) such that for all x, x' E Do 

I eT[J(x)-J(x')]ejly1YIJ11X -x'Ill, 1 S i, j <. 

Then, given a pivoting strategy PO, there exist e, 8 > 0 such that if II xo - x*11 2 < , 
if Po0J(xO) has an LU decomposition without pivoting, and if II JO- J*II F < 8, then the 
Doolittle updating algorithm generates {Xk) which converges locally and q-superlinearly 
to x*. 

4. Numerical Results. An abbreviated version of the new algorithm was tested 
without using m or ,B. The test problems are the ones Broyden [2] used for initial 
testing of the sparse Broyden update. They are all banded systems. 

Problems 1-6: f = (3 - klxi)xi + 1 - xi1 - 2x1+?. 
Problems 7-23: f, = (k - k2x )x1 + 1 + k3 Yj =rl; jzI xj + X2i. 

For i < 1 or i > n, xi = 0. The parameters kl, k2, and k3 are varied to increase the 
nonlinearity of the problem, while r, and r2 determine the bandwidth. The initial 
guess in each case was xi = -1, i = 1, 2,.. ..,n. The convergence criterion used was 
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IIFI12 < 10-6. All the algorithms converged from this guess and we felt that this 
situation provided the best test of our new algorithm since a poor Jacobian 
approximation method is more likely to inhibit local rather than global convergence 
in a sophisticated implementation. 

Four algorithms were compared, each starting with a finite difference Jacobian 
generated by the Curtis, Powell and Reid technique [4] to economize function 
evaluations. The algorithms are: a finite difference Newton, a finite difference 
Newton with fixed initial Jacobian, the sparse Broyden, and the scheme given here. 
These are flow-charted concurrently in Figure 1. The numerical results are presented 
in Table 1. 

initial guess 

x 

F = F(x) 

B = f.d. JF(x) 

D ecomposition 

B = LU 

Lw =-Fx 
Bf.d. NFw d (x) Update B 

x x+ x x+ 

F.- F F F+ 

f.d. Newton S+ 
x+ 

sparse f.d. Neid on 
F+ F(x ~~~~~~~~~Broyden 

fixed ini tial1sas 
Jacobian LU 

FIGURE 1 
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The important comparisons are in the number of factorizations, NFAC, and the 
number of function evaluations, NFEV. For these problems, it is clear that the finite 
difference Newton method costs more than the fixed initial Jacobian method which 
costs more than the Doolittle updating method. No pivoting was used in any of the 
algorithms. 

(1) (2) (3) (4) 

f ixed 
initial sparse sparse 

f.d. Newton Jacobian Broyden LU 
NFAC = 1 NFAC = 1 

PROB DIM BANDW IT = NFAC NFEV IT = NFEV IT = NFAC = NFEV IT = NFEV 

1 5 3 3 12 8 5 5 
2 5 3 3 12 7 4 5 
3 10 3 3 12 11 5 6 
4 20 3 4 16 15 5 6 
5 600 3 4 16 18 5 6 
6 600 3 4 16 15 7 8 

7 100 7 4 32 11 6 7 
8 100 7 4 32 11 6 7 
9 100 7 4 32 13 6 7 

10 50 11 4 48 10 6 7 
11 50 11 4 48 14 7 8 
12 50 11 4 48 14 8 8 

13 50 11 5 60 23 9 12 
14 50 11 5 60 22 11 11 
15 50 11 5 60 27 11 13 
16 50 11 5 60 18 9 10 
17 50 11 4 48 17 8 10 
18 50 11 4 48 15 8 9 

19 50 11 4 48 17 9 10 
20 50 11 5 60 26 12 13 
21 50 11 5 60 30 13 14 
22 50 11 5 60 31 13 14 
23 50 11 5 60 34 13 16 

TABLE 1 

The comparison with the sparse Broyden depends on the relative costs of NFAC and 
NFEV. Compared with the finite difference Newton method, the sparse Broyden 
costs less if 3 to 21 function evaluations cost more than one factorization. Compared 
with the fixed initial Jacobian, the sparse Broyden costs less if 1 to 3 function 
evaluations cost more than one factorization. But compared with the Doolittle 

updating scheme, it costs more whenever 1 function evaluation costs less than 3 
factorizations. In other words, the function evaluations would have to be very 
expensive, compared to the factorizations for the sparse Broyden to be a better 
choice than our scheme for these problems. We should point out that since the 
Doolittle updating scheme has done so well on banded problems for which factoriza- 
tions and finite difference Jacobians are so cheap, and from such good initial guesses 
that an inaccurate Jacobian can impede convergence, we expect even better results 
on general sparse problems. 

5. Conclusion. We have delayed formal publication of this research for several 
years because we were unhappy with the need to refresh the Jacobian at intervals 
and not to update any row if the part of s is small that interacts with that row. 
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Recent work, [81, [14], has convinced us that these requirements are necessary for 
convergence and numerical stability even though we cannot give a rigorous proof of 
this conjecture. We have no doubt that the situation will become clarified in time, 
but we feel that it is silly to delay publication any longer of a potentially useful 
numerical method just because the analysis of the method is not provably sharp. 

The ideas here are certainly applicable to other factorizations. In the current 
context, we really do not mean to make too much of the idea; we just suggest that it 
could be used in an implementation of Newton's method in place of any iteration 
when the Jacobian would otherwise have been left fixed. 

Finally we remark that the Doolittle updating scheme is reported [20] to be five 
times faster than Newton's method for a particular application called the black oil 
model in reservoir engineering. 
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Appendix 1. This appendix contains the proofs for Theorem 3.3 and Theorem 3.9. 
Proof of Theorem 3.3. Since A(xo) is nonsingular and the LU decomposition 

without pivoting exists at xo, it follows from Theorem 3.2 that the leading principal 
submatrices of A(xo) -kA(xO), k = 1,2,...,n, must be nonsingular. A(x) and all 
of its submatrices are Lipschitz continuous in N(xo, e0). By the Inverse Function 
Theorem [16] there exist -,, c2,. . . ,cn such that kA(x) is nonsingular in N(x0, ek). Let 

? = minmIk-n Ek. Then all the leading principal submatrices of A(x) are nonsingular 
in N(xo, e). Another application of Theorem 3.2 establishes the existence of the LU 

decomposition without pivoting for all x E N(xo, ?). 
Further restrict - so that the preceding factorization holds on N(xo, e). The proof 

that the factors are Lipschitz continuous is by induction on the dimension [18]. Let 
x E N(x0, ?) and A(x) = L(x)U(x). 

For I = 1, 'A(x) =A(x) = a, (x) and 

all(x) - 1 * all(x) = Il(x) * u,,(x) 'L(x)'U(x). 

Thus 

aInL(x)-IlL(xo)llF - 1 1= ?) IIx - X0112 

and J1 U(x) _ U(x0)11 F = |al l(x)-al l(xo) |<)l l 1I ,lx-XO 112-C l IX-Xo 112. By 
the Inverse Function Theorem, 1L-1 and 'U-' are Lipschitz continuous in N(xo, ?). 

Let cl and d1 be the respective Lipschitz constants. 
Assume, for / = 2, 3,. . .,k, k < n - 1, that 

II'L(x) - 'L(xo)I F < C X - XO 112 and 11IU(x) - 'U(xo)I F < d 1Ix - X11 2 

for all x E N(x0, ?); further assume that the inverses 'L-'(x) and 'U-'(x) are 
Lipschitz continuous on N(x0, e) with Lipschitz constants c, and d1 respectively. 
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For / = k + 1, let k+ IA(x) be partitioned as 

k?IA(x) =Li[k2A(x) Fv(>) 

W w(X) Iak+l,k+I(X)- 

Since kA(x) - 
kL(X)kU(X), k+ IA(x) can be factored 

k+IA(X) = k+IL(x)k?lU(x) 

[ kL(x) 0 kU(x) kL (x) kv(x) 1 
- - - - - - - - - - - --- - - -__ _- _ 

L kwT(x)ku l(x)I 1 ? ak+I(X) 

where ak+l(x) ak+l k+?(X) -kWT(X)kU-l(X)kL-1(x)kV(X). 
Now, 

Ik+ IL(x) - k+ L(xo)Il F 
11fE kL(x) 0 o [ 

kL(xO) 0] 

[kWT(X)ku (X) [kwT(XO)ku(XO) 1 

< 11 L(x) -kL(XO)II F+ 1IkwT(x)kul(x) - kwT(x)2ku 1()11 

s CkllX - XoI12 + IIkWT(X) - WT(x)IIIIkuU (x)II2 

+ 11 kwT(xo)II2 II kU l(X) - kUl(Xo)Il2 

k 1/2 
?{Ck + ( 1, ) 

1/22 x*Spxoe) + IIkwT(xO)II2ak} ix -X0112 
t~~~~~~~ i= XN(xo, E 

Ck+1I | X XO 11 2. 

And, 

II k+lU(x) k+ IU(xO)II F 
[kU(X) k kL-(X)kV(X) 1 | kU(x ) kL-l(X )kV(X)] 

|| ak+l(X) ?0 ak+l(XO) I F 

U(X - kU(XO )IIF + Il Ll(x) kV(X) -kLl(xo)kV(Xo)|12 

+I ak+ I(X) - 
ak+ I(XO) I - 

Applying the triangle inequality to the second term yields 

Il kL-l(x)kv(x) - kL l(x )kV(X )II 2 

? IIkL l(x)[kV(X) -kv(xk)]II + II[L(x) -k l(xo)]kV(X0 

s up II kL-l(x))1 ( 1Y2k) + Ck II v(XO)ll 2] lX - X0 112 
x E N(xo,11i. 

--8k1 
- 

X0|112 - 
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Similarly, the third term on the right-hand side can be estimated: 

I -(X) k+Il(XO) I 
?j ak+l,k+1(X) - ak+l,k+1(XO) I 

IIkWT(X)ku-,(X)kL-1(x)kV(x) -kWT(Xo)kUl(XO) L(O( o) I 

-k+l,k+I X0112 + | (kWT(X) -kWT(x ))ku-,(x)kLl(x )kV(X) 

?IkWT(Xo)[kU-,(x) - kU-l(x )]kL-'(x )kV() I 

kw T(Xo) ku (Xo)[ kL-1(x) - kL-1(x )] k() I 

+ kWT(X )kU-1(X )kL-(x )(kV(X) _kV(X)) 

( n 1/2 

yk + 1, kW ) 2k SUp 2+ kj lSUp 11 kpUl(X)I Il L(x)l 211 V(X)II2 
?{Yk?lk1 ? 

k)I 

xFN(x0, E) 

+ 11 kw(xo)Il 2 IIU(x0)Il 2Ck S lkV(X)lI 2 
xxN(xx, e) 

+I kw(xk)II 211 SU (xk)V211 L (x )II2( i Y-k?l)/ 

* || X-XoI1l 2 -kIXxII 1 2 k 

Set dk4+I dk + Pik + 3k, 

By the Inverse Function Theorem, k+ L-l(x) and k+ 'U-'(x) are Lipschitz con- 
tinuous on N(xo, c) with Lipschitz constants Ck+l and dk+l respectively. The 
induction is complete. Define co = cn and do = dn. 

The proof of Theorem 3.9 is rather long and detailed. It consists of three main 
portions: first establishing that P0J(x*) can be factored without pivoting, proving 
local linear convergence by a Kantorovich analysis, and finally establishing the 
(m-step) Q-superlinear convergence. The second portion is subdivided further in the 
text. 

Proof of Theorem 3.9. Part 1: P0J(x.) can be factored without pivoting. 
Let > 0 such that N(x, 1) C Do. Set y II 112 and define K IIT II,. By 

Lemma 3.6, given a pivoting strategy PO, there exists an ?o e (0, el I such that: if the 
LU decomposition without pivoting of P0J(xo) exists at xo E N(x*, e0), then 
P0 J(x*) can be factored without pivoting, and hence P0J(x) can be factored without 
pivoting, for all x c N(x*, Eo). Let P0J(x) = L(x)U(x). Furthermore, 

11 L(x) - L(x*)I F Co 11 x - X*11 2 

for all x E N(x*, E). 
Part 2: Local linear convergence. 
(a) Select constants. Now choose e in (0, eo), 8 > 0, and r E (0, 1) such that 

(A.1) a2c( 1 r ) < 8 and y(I + r)[Ke + 2'qip-3] < r( -r), 
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where a2 = a + (m - I)aO, and a0 o jll U. 11 2cO(2 + Vn i), a, = FniHf3K, and 

t = sup IIL(x)112 and 7-1 =max{l, sup IIL-1(x)112}. 
xeN(x*, EO) x N(x*, EO) 

(b) Establish upper bound on II JI-l I 2. Further restrict e so that I J(x) - J*II F < 8 

whenever IIx - x* 12 < E. Let x0 E N(x*, E), then 

11 L(xO) - L(x*) II F < CO 11 XO - X* 11 2 

If 11IJo-J*11F <36, then II JO-J* 11 2 < 'q3 < 2; by definition of i and 
q, 

we 
have -ji1 > 1 and thus from (A.1), y(l + r)2rl ? r. Therefore the Banach Lemma 
[16] gives 

(-r)(I )y 

(c) A double induction. The algorithm requires a double induction because of the 
restart criterion. Therefore we index the Doolittle updating algorithm as follows. Let 

p =im,i 0,1I,.., and k E {p, p + l,...,p + (m -l1)},and 

Xk+1 Xk- Ur'Lp Fk 

with {Lp} and {Up} determined in step (5) and {Uk} Ifpj 1) determined in step (7). 
Then 

Xk+I - X* = Xk - X*- U,)L;p(Fk - F*) 

+ Uk'Lp;J*(xk - x*) U7ILp;Jl*(Xk - x*) 

and 

(A.2)IIXk? -xII2 ? IIUk'L' 112[11Fk - F* -J*(Xk -x*)2 

+IlLpUk-J*ll2llXk -X*ll2] 

The induction will show that 

IIxn+I - X*112 rllXn - X*112 

for 0 ? r < 1 and for any n, and thus establish the local convergence result. 
(1) Step 1 of induction. Forp = 0, k = 0, (A.2) becomes 

Ixi - X*112 2 11J 112[(K, + 2ipS)11xo- X*112] 

? (1 ? r)y(KC ? 2iiS)11x0 - X*112 X nix0 *11 2. 

Assume, forp im, i 0, 1,...,j, that 

1Ixjm - x* 11 -< r 11 Xjm-, X*11 2- 

Then xjm E N(x*, c), and it follows that II Jjm-J* II F < a and I Jjm -J* 11 2 < 2'qS 
From (A.1), 2y(l + r),q 8 r, and the Banach lemma gives 

IIJjm 112 (2 r) 
(1jm - r) 
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(2) Induction on p. For p = jm, let k = p. Then (A.2) is 

IIXjm?I - X*112 ? IIJjm I2[(c + 2T14)IIXjm X*112] 

(?r) 
(1 -) y(c 2 ]1xm * *12?<rIIxjm-x*112. 

(3)Inductiononk.Assume,for1=p, p + 1,...,k - 1,k ?p + (m - 1), that 

IIX1+ - X*112 <- rllx - X*11 2- 

Now, 

11 LpU1+ -J* 11 L-1IF LPUI+ LI-ULpU* + LpU*- L*U* 11 L-1,F 

< 11U1+I - U*II F + ILp11121Lp - L*IIFIIU*112 

? 11 U1+1l - U*II~ ?l II11 ;'11 2 nIKUI + 11 U*11 2co 11 xp - x*] 

+11LpII2IIU*1II2IILp - L*IIF 

by Lemma 3.6 and the fact that: for a, b, c > 0, c2 < a2 + b2 implies c < a + b. 
Since 11 Lp;' 11 2 

11 LpU+ I -J* 11 L-1F <11LPUI- L*U* 11 L-1,F+ 27II U*"1121Lp -L*"IF 

+ 1f1 + q1 4,B 11 U* 11 2CO 11 XI - x* 11 2 

ILU1 p- L*U*IIL-1,F +a1 + a01x1 x*II2 

Therefore, 

IILpU+1? - L*U*IIL-,F? IIL~U~, - L*U* 
IL-1,F? 

a i + ao(l + l)IIxp- x*II2 
I=p 

a a2 a, ? II LPUP - L*U*II L-1,F 
i=p 

and, for = k - 1, 
k-I 

IILpUk - L*U*I L-1,F < IILPU - L*U* I L-1,F + a2 r e 
i=p 

| ILpUp L*U*II L1I,F +-(-r)rP?iS+ ?2i7. 

Thus, 

11LpUl+ I -J* 1! 2 < 
'-1 LpUl+ I J* II F <- Tq LpU+ J L , 

and this gives 

IITIT-'I 11 2 < ( r) 

which with (A.2) yields 

||x+l X* 2<,_ (I + ) -Y[K, + 2t77q71S]llXk X*12< -rllXk X*11 2 by (A.1). IIXk?1 - X* 112? (I?r) 
? TiPSIIk- X*1 rI2 ~I2b A) 
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(4) Conclusion of local convergence. For / = p + (m - 1), (A.2) is 

IIXp+m - X*II2 r rIIxp+(m-1) - X*II2. 

So xp+m E N(x*, e) and II Jp+m - m IJ* F < S. This establishes the local and linear 
convergence of the Doolittle updating algorithm. 

Part 3: m-step Q-superlinear convergence. Q-superlinear convergence then follows 
from Theorem 3.1 of [6]. Since p = im, i = 0, 1, . .... 

l(Jp - J*)(XP - xP)211 ? 
114 -J* 11 2 

0, 

IXp l Xp 2 p -oo 

it follows that 

11xP+I - x*11 

11 xp -x* 11 p-> 00 
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